Effect of the Composition of Lanthanide Complexes on Their Luminescence Enhancement by Ag@SiO2 Core-Shell Nanoparticles
نویسندگان
چکیده
Metal-enhanced luminescence of lanthanide complexes by noble metal nanoparticles has attracted much attention because of its high efficiency in improving the luminescent properties of lanthanide ions. Herein, nine kinds of europium and terbium complexes-RE(TPTZ)(ampca)₃·3H₂O, RE(TPTZ)(BA)₃·3H₂O, RE(phen)(ampca)₃·3H₂O, RE(phen)(PTA)1.5·3H₂O (RE = Eu, Tb) and Eu(phen)(BA)₃·3H₂O (TPTZ = 2,4,6-tri(2-pyridyl)-s-triazine, ampca = 3-aminopyrazine-2-carboxylic acid, BA = benzoic acid, phen = 1,10-phenanthroline, PTA = phthalic acid)-have been synthesized. Meanwhile, seven kinds of core-shell Ag@SiO₂ nanoparticles of two different core sizes (80-100 nm and 40-60 nm) and varied shell thicknesses (5, 12, 20, 30 and 40 nm) have been prepared. The combination of these nine types of lanthanide complexes and seven kinds of Ag@SiO₂ nanoparticles provides an opportunity for a thorough investigation of the metal-enhanced luminescence effect. Luminescence spectra analysis showed that the luminescence enhancement factor not only depends on the size of the Ag@SiO₂ nanoparticles, but also strongly relates to the composition of the lanthanide complexes. Terbium complexes typically possess higher enhancement factors than their corresponding europium complexes with the same ligands, which may result from better spectral overlap between the emission bands of Tb complexes and surface plasmon resonance (SPR) absorption bands of Ag@SiO₂. For the complexes with the same lanthanide ion but varied ligands, the complexes with high enhancement factors are typically those with excitation wavelengths located nearby the SPR absorption bands of Ag@SiO₂ nanoparticles. These findings suggest a combinatorial chemistry strategy is necessary to obtain an optimal metal-enhanced luminescence effect for lanthanide complexes.
منابع مشابه
A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver.
A facile one-pot microemulsion method has been developed for the synthesis of spherical silver core-silica shell (Ag@SiO2) nanoparticles with europium chelates doped in the shell through a silane agent. The method is significantly more straightforward than other extant methods. Measurements of the luminescent emissions from the Ag@SiO2 nanoparticles, in comparison with control silica nanopartic...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملAg/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation
The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...
متن کاملHigh performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones
Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell ...
متن کاملSelf-Assembled Lanthanide-Cored Dendrimer Complexes: Enhancement of the Luminescence Properties of Lanthanide Ions through Site-Isolation and Antenna Effects
The site isolation of lanthanide cations (Er3+, Tb3+, and Eu3+) has been achieved through the self-assembly of three convergent polyether dendrons, each with a carboxylate anion focal point, around the central trivalent cation. Evidence for the self-assembly of the dendritic complexes can be obtained by a variety of spectroscopic and other analytical means both in solution and in the solid stat...
متن کامل